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Results for the free molecule mass flow rate through a flat plate

channel of finite length, assuming diffuse molecular reflections from the
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wall, are cbtained and are in good agreement with previously obtained ap-
proximate results,

Results for the heat transfer between'the channel walls and to the
environment due to free molecule flow and thermal radiation when the
channel walls and the environment at the inlet and exit are all at dif-
ferent temperatures are given. >

The heat transferred by the free molecule flow is found to be sigs
nificant when compared to thermel radiation for conditions that would be
applicable in s thermioﬁic’converter.

INTRODUCTION

LThere is a general interest in the rarefied gas mode of hegt trans-
fer because of the low density environment that is being encountered in
present day technology. When the mean free path of the molecules is large\‘\‘
compared to the model dimensions +the usual continuum transfer equetions,
which are really limiting solutions for very smdll mean free molecule

paths, no longer apply. The problem must then be solved using the kinetic

theory of gases.




The problem of free molecule flow heet transfer between Infinite
plates was treated by Knudson as discussed in (1). The problem of heat
transfer in an adigbetic tube and nozzle with free molecule flow was
treated in (2,3). The heat transfer to a nonconvex surface from a free
molecule stream is treated in (4).

The model analyzed here éonsists of a flat plate channel of finite
length with the plates at different temperatures and with a free molecule
flow between them as shown in Figure 1. The right and left environments
of the channel are at different temperatures and densities. First, the
molecular stream ineident on the surface of the channel wall will Dbé
calculated, From this the mass transfer flow rate through the channel
formed by the plates 1s found. This will be compared to the results ob-
tained by Clausing (5) using an approximate method of solution. Then the
total energy leaving the surface is cbtained. Using these results the net
energy trensferred between the surfaces and the environment is found. Tt
is assumed that the wall temperature is isothermal along its length and
that the accomodation coeffiecients are constant for both plates, Finally,
the thermsl radistion heat transfer is calculated for a similar model,
and the heat transferred by radiation is compared to thet for free molecule
flow for a particular situation that migﬁt arise in thermioniec energy converters.

NOTATION

e

P e o My !‘Q
Cnites anu

Ay = area of plate - :

A = inlet cross-sectional ares 3 ! my.
Cy = heat capacity at constant volume

E - R

energy per unit mess of the molecular stream, (?v + ;)T



-3 -

e = rate of energy per unit ares lesving a surface
exo,t = total energy emitted and reflected lemving surface 1 per unit

area at loeation Xg

Fx-L = shape factor from left end to element at point x, Eq. (2)
£ = mass flow rato, (m - mp)/(mp - mp)

K = kernal, Eq. (3)

1 = length of plates divided by distance between them

M = welght of molecule

MW = molecular welght

m = mass flow rate per unit area

mL_R = mass flow rete through the channel per unit cross-sectionsl areas

NV = number of molecules per unit volume with velocity in renge V to
V + 4V with a net velocity component in the direction of the

posltive normal

Q = tbtal heat rate leaving surface

R = gas constant, 8‘§§§107 sqfq;eZ?;QK or 1&367 g;lé

T = temperature

u = gverage nontranslational internsl energy of the molecules

v = veloelty of molecule

X = distance glong lower plate divided by the distance between the

plates
Greek Letters:

aceomodation coeffiéiené} emissivity

Q =
1
B - 1/(2r0)/2, mq. (1)
3 = distance along upper plate divided by distance between plates

density

he)
i
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Pg = density at stendard conditions, 273° K and 1 atm
o = Stefan Boltzmann conétant, 1.36x1012 cal./sq. cm. sec. Ok*
P = subsolutions as given by Egs. (10) to (14)
0] = integrated mean, %‘ J\Z P ax
0
__' 1
oF = integral JQ @EX_L dx
v = angle
Subscripts:
A-B = from A to B
L = left environment
R = right environment
t = total leaving surface including reflected and emitted streams
X = position along lower plate
13 = position along upper plate
0 = location on surface
1 = lower plate
2 = upper plate

ANATYSIS
The model analyzed consists of two plates whose length divided by the
distance between them is 1. The pletes are infinite in width and are
at temperatures T; and T,, respectively. The left and right environ-
ments are at temperatures T; and Ty and densities p; and pps TE=
spectlvely, as shown in Figure 1. It 1s assumed that there is a Maxwelllan

equilibrium in the left and right environment and that the density of the
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gas 1s sufficiently low so that the mean free path of the molecules is
large and therefore the effect of intermolecular collisions in the thannel
can be neglected. TFirst, the total number of molecules incident on any
part of the wall must be calculated.
Mass Flow Rate leaving The Wall

The total mass flow per unit wall area .6 reaching a surface ele-
ment at point x5 due to the direct Influx of molecules from the open
left and right ends and by rebounding molecules from the opposite wall

is

meo = ™rFxo-1 T "R'x0-r * J;:O mgK(xgs€)as (1)
The term my 1is the mass flow rate of molecules entering through the
open left end per unit ares and is derived In the appendix =s equel to
my, = pL(RTL/Zx)l/Z. The term F, r, 1is the ususl shape factor used In
radiation that gives the fraction of molecules entering the chahnel
times the entrance ares that are incident on a unit area of the wall at
location xPe The term me is the mass flow rate of molecules per unit
area leaving the upper wall at loecation ¢ and is equal to the mass
flow rate incident at that point. Tt is assumed that the molecules-
leave the surface in a difffise menner. The term K(x,&) 1s the shape
factor that gives the fraction of the emitted molecules from the infinite

strip of differential width at £ +times the area of this strip that reamch

the elemental ares at x per unit area. These are given by



F_, = Ll - X 3 F, _ =‘£{j - Lo X s (2)

1
z[(g - x)% 4 1}3/2

and are derived from the interchange factor given on page 21 of Jskob (6).

K(x,8) =

The similarity of equation (1) to the equation for radiant heat transfer
1s discussed in (2).

If all the m's in Equetion (1) is equated to Mps the resulting
relationship will be correct as can be seen by the integration of the
intergral term. This corresponds to the case of an isothermal enclosure
where the rete of molecules per unit area leaving any surface of the en-
closure is the same. Adding this to Equation (1) gives after some re-
arrangement

H = foq = Fxour, + j: ng(xo,g)dg (4)
From the symmetry of the problem, at equal distances slong the plates
myo = Mgg Or fy = (f§)§=x’ The function £, is antisymmetric,
f(x) =1 - £(1 - x), as can be proved by following a similar procedure as
discussed in (2). The solution to Equation (4) was obtained by numericel
Integration and iteration. The resulis are shown in Figure 2 for various
values of 1.

Mass Flow Rate Through The Flat Plate Channel

The net mass flow rate through the channel per unit entrance sarea

can be found from
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) 1
m.g =0~ 2 f mF g dx-|mp - 2 f meFy g & (5)
0 ‘ 0

The first term on the right is the mass flow rate per unit entrance area
entering the channel, the second term is the mass flow rate leaving

through the entrance that comes from the walls. The shape factor Fx-L
gives, by use of the reciprocity rule for shape factors, Fiox QA1 = Fy. 1, dA,,
the fraction of the mass rate leaving the walls per unit wall ares that

is transported out through the entrance of the chamnnel times the entrance
area of the channel. The mass rate leaving from the upper wall through

the inlet is equal to the amount leaving from the lower wall by symmetry.

The last two terms give the mess rmte leaving through the inlet that enters

the right end and has no collision with the wall. Since ‘/‘ v Fyor dx 18
0

1
equal to L/‘ Fy.r dx Eq. (5) can be rewritten as
0

m A
T~-R :
s = 1-2 L Fy1, dx (6)

T R o

The mass flow rates through the channels are shown in Flgure 3. It can be
seen that the net through flow decreases as the length becomes larger. These
results are compared to the solution of Clapsing as given in (5) which was
obtained by assuming a linear form of f, with an added correction factor
and are in good agreement with the more exact present solution.
Total Energy Ieaving The Surface Element

The total energy per unit ares €x0,t leaving surface 1 at ppint Xq

is derived in the same manner as Egq. (27) in (2). The accommodation coef-

ficient 1is defined as
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Lo Sx0,t (ex0,t) 1ncident
Myeobx = (eXO,t)incident

(7=)

where (exo,'t)incident is the total energy incident on the surface per
unit area and meEX is the rate st whieh the energy would be carried
away from the surface if a1l the incident molecules achieved thermsl egqui-

1ibrium with the wall. This can be rewritten as

1
®x0,t = Wiy * (1 = a){mBrlyo 1, + mepTyo g * j; eg tK(x0,8)at

(7p)

Where Er 1is the energy per unit mass of the stream entering froﬁ’the
left end and is derived in the appendix, This essumes accommodetion coef-
ficients o &are equal for both isothermel walls snd all the molecules amre
assumed to leave the walls diffusely.

If it is assumed that ©x0,t7 mf;, mgEp, and eg,t are equal to ep
in Equation (7a), this relationship is ptill true as can be proved by
integratfon of the integral term and adding this to Equation (7b) to give

®x0,t = °r = a(meBy - eg) + (1 - a)f(ey, - er)Fxo.1,

2
+ /O (eg’t - eR)K(XO,g)dg] (8)
similarly for wall 2,

ego,t - eR = G,(mgoEz - eR) + (l - CL) [(GL - eR)FgO-L

A
+ L (ex,'b - eR)K(ngo)d-x] (9)

Because of the linearity of the problem, the principle of superposition
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can be used to reduce the problem into. simpler parts that can be added to-

gather for various boundasry conditions as follows:
ex,t = ®R = 91.1(ep = er) + P1.1aF1(my, - mR) + @1.18(mRE] ~ ep)
t Py paBplmy, - mp) + @y pp(mpEy. - ep) (10)

®g,t = R = Prop(eg, = ep) + 9 ppFy(my - mR) + 9 _pp(mphy ~ ep)

+ 91.1Fp(my, -~ mp) + Pp_yp(mgEy - eg) (11)
.. Wwhere
1
Pr.r, = (1=-a) [FX-L + CPl_LK<X;§)d§] (12)
0
1 =
Ppqp = fx + (1~ a) f Py _paK(x%,8)dE (13e)
1 0
, F
Py pp = (L -a) f Py _aK(x58)dx (13b)
~0 .
B N Z N “
Prap = *+ (1 = o) f P1opK(x,£)dE (14a)
0 .
(
2 .
P op = (1= a) f Py _1pE(xst)ax (14v)
0 - ‘

These subsolutions have some physical significance. If To eand Ty,
are equal to Tr whlle the lower surface is at Ty, and if my = mp,
that is, the densities as well ag the tempcrabtures ol the left and right
environment are equal, then for this case the total energy leaving the

lower surface is e

]

x,t = €R + wl-lB(mREl - eR) and the energy leawing the

upper surface is eg’t

L]

eg + cpl_ZB(mREl - eR). The curves for P13
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and Ql-ZB are given in Figure 4 for various values of 1. It can readily

be seen that the limiting cases for I = 0 are (@l lB)ZeO =q and

1
2 - a

<¢l-ZB)Z»O = 0 and the 1imiting cases for 1 = =are (wi_lB)qu -

and (¢1_ZB)1QM = % : Z' The results are symmetrical around x/I = 0.5, In

O, while 1In

It

the 1imit ag o —= O the solution reduces to P11 = P1-2B
the 1limiting case of o =1 the solution reduces to P11 = 1 and
Ppzp = O

Simtlerly, 1f T; =T, = Tp, mp = mp, and Ty # Tp, the energy leav-

ing either surface 1s glven by ex,t = ©R * 9 1 (eL - eR). These results
are given in Figure 5. The limiting solution when 1 =0 1s

- 1-4a DU , |
(P1.1,) 150 = ( = L and for 1w is (9_1) yo = O- 'The limiting golution

for o =11is = 0; the 1limiting solution for o = 0 1s the same as

Equation (4) and is given in Figure 2.

Finally, 1f Ty =T, = Tz and if e = eg but my # mg, then the
total energy leaving elther surface is glven by
et = SR * (mp, - mg)Ep(@y_3a + P1.24). The results for ¢;_;, end
P, _pp are shown in Figure 6, For 11 = O the solution reduce to
P1a = a/2 and Py _op = 0.

Net Energy Leaving Surface
The net energy leaving surface 1 is the difference between the emitted

and absorbed energy:

= -2
A0 my X = 3 (ex,) snctdent I (18)

Since.
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ex,t = (1 - a)(ex,t)ine1dent + oBF1 (186)

Equetion (15) becomes

: )/
Q o
0

1
Since ‘]Z; f fy dx =% because of the antisymmetry, Equation (17) be-
0

comes

2

m,. + m
%Q_é_g"l:El(L R) - ep -(ex,t - eR) (18)

where the bar denotes the integrated average value. Similsrly, the net

heat leaving wall 2 would be glven by

1
:IQX?‘J_. T ?a,sz f (Ezm ) eﬁ:t)dg (19)
0

or

Q‘Z - ) + ‘ '
_A_]_-, (1 - ) = EZ 5 -ep - (eg,t - eR) (20)
1

The integrated values O = ¢ dx needed to evaluate (ex,t - eR)

o~ |

0
from Equations (10) and (11) are glven in Figure 7.

Net Energy from the Environment

The net energy entering the channel through the lefl end is equal to
qr, Z 2
KE = mLEL - eX,tFX-L dx ~ eg,th_L ae
0 0

l
- meEp (L - 2 /; F g dx (21)
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whieh can be written as
1 1.

9 B ( )F, - dx (e en)Fy _; dt 22
KE“ELEL TRER " ®x,t ~ °R/x-L A g, 6~ SR/FE-L (22)
which 1s equal to

EE = By = 8 = [ e e F - [ e F I] (23)

& "L %R T (5x,t - °R)x- (®e,t = ©r)Fe-

Pt

Shown In Figure 8 are the integrated results for o..F, ® F
L2 1.7’

" - ———(— Ry i Z
cpl_zAF, cPl-ZBF’ end cPl-lBF where OF = L(; ¢F dx. Using these terms

with Equations (10) and (11) gives QL/AL.
by conservation of energy the net energy from the right side cen be

obtained from

4, % Y %
ﬁf+ﬁf+7€+3€=o (24)

RADTATION HEAT TRANSFER
In most cases where the free molecule flow is important the thermel

radiation will also be important. It is of interest, therefore, to give

the radistion results. These can be obtained from equations similaer to those

for the free molecule flow. The radiation problem for the model treéted
here is similar to one treeted in (7), but 1t includes the effects of the
right and left environménts that in (7) were neglected. From an energy

balance the total energy leaving point

point x. b distion h egen
0

model is

|/
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In this case exo,t is the totsl energy leaving point Xp by radistion
and ey, and ep for this case are equal to cTﬁ and cTﬁ. The emissivity

/

of the surfaces is giwen by o. Equation (25) can also be written as

1
®x0,t = SR = @(ep = eg) + (1 - “)[(eL - *r)Fxo.1, +f (e, 4 = eR)I((XO'E)dg]
0

(26)
A similar equation would apply for waell Z:
1
®eo,6 ~ °r = (e = ep) * (1 - ) f(e - ep)Fyq g+ (ey ¢ = eglK(x,8p)dx
(27)
Since this equation 1s linear, by superposition, it can be reduced to
simpler perts as follows:
®x,t - °r = P1-18(®1 - °g) *+ ¥1_pplep - ep) + ypler - ep) (288)
and
®,t = ®r = P1zp(e1 = eg) + 91_1p(ep = ep) + 9p(ep, - ep) (28b)

where the ¢'s are the same relationships given in Egs. (12) and (14).
The net heat radiated from wall 1 can be calculated similarly to the

free molecule case to be

!
89
_A1=T~_—T—l—oulf(el-el)dx (29)
0
which gives
9 (1-4) )
_,_Al -—T—l = el - eR - ex,t - eR (50)

The term ey ¢t - eg 1s obtained by finding the integrated average value of
2

Eqy (28) by the use of Figure 7.



- 14 -

Similarly for wall 2,

W (1 ~-a)
Ki (1 = =ep -ep - (5;:;—:_35) (31)

The energy entering from the left end is also cobtained as befores

1
QL :
= =ep - ep~ (ex,t - eR)FX_L ax = (eg,t - eR)Fg-L ae  (32)

0 0]

R O L s L (33)

By the use of Equation (24) Qg can then also be found,
Exemple Case

For purposes of illustration and to indicate the magnitude of the -
free molecule heat trensfer en example 1s carried out. Consider the case
where the left snd right environments and one wall are at equal tempera-
tures and the densities of the left and right environments are equal while
the other wall is at tempersature Ty This type of situation may arise
in a thermionie energy convertor, TFor this case the free molecule heat

transfer from Equations (10) and (18) 1s seen to be

al _ [omg(Ey - ER)] 1 -
[A;]conv [ (1 - a) conv ( 91-18) (34)

Similaerly for radiation, from Egs. (28) and (30)

(o) _faley - =8 \

Pirea LT Jraa ) o

Teking a ratio gives
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Queonv _ [ 1 -o ] [=R(E - ER)} (36)
Ql,rad a(el - eRT]rad conv

The gas is taken as argon at a density of 1074 Pg where Pg “iékthe
density at standard conditions (273° K and 1 atm), and thé plates are
tungsten with plate 1 at 2000° X and plate 2 at 500° K. The wall emis-
sivity is taken equal to 0.3 and therefore

[ 14— Q 4.] - 0.107 5% g:i sec.
%0(Ty = Tg) Jraa

The accommodation coefficient for the argon-tungsten combination is given

in (8) as 0.85. Also
1/2
RTR -3 gr
= b = 2,296x1 s
"R = PR (?n ) 2.296x10 sq. cm. sec.

Since for argon cy = S R,

E, - By = 2R(Ty - T

Combining these results gives

2) = 149 cal./g.

Q1,conv _ o o1
Q‘1,rad

which indicates that the free molecule flow heat transfer is not negligi-
ble for conditions that might occur in a thermionie device. This ratio,
however, will depend strongly on the conditions chosen. For ‘wiss higher
wall temperatures tﬂ%n chosen here the radiation heat transfer will in-
crease because the radiation depends on the temperature to the fourth
power. For hlgher densities the free molecular hest transfer will in-
crease since it is directly proportional to the density. At very high
densities however, the present solutions are no longer applicable be-
cause the mean free path will be small compared to the channel width,

and the effect of intermolecular collisions will become important,
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The dimension of the channel for free molecule flow to occur can be
found if we know the mean free path of the gas molecule., For hard sphere
molecules the mean free path Lj 1s given by

1

& m

where op 1s the molecular cross section. Teble 1.6 in (8) gives for

Ly =

=]

argon

Iy, = 621076 22 om.

For ps/p of 104, L, 1s 0.062 cm. which is large compared to distance
between the plates used in thermionic energy convectors.
RESULTS AND CONCLUSIONS

The present results can be used to find the mass flow through a
channel in a free molecule environment, and they are in good agreement
with the approximate solution of Qlausing. The heat transfer between the
surfaces and the environment by free molecule flow and by thermal radiation
can be found for arbitrary combinations of temperatures by superposition
of simple solutions. A comparison of the radistion heat transfer to the
free molecule heat trmnsfer in a sample case that would arise in a -

thermionic converter shows that the free molecule heat transfer can be

significant when compared to the radiative heat transfer.
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APPENDIX - MASS FLOW THROUGH AN AREA ELEMENT
The meass flow rate throtgh an elemental area dA with & Maxwellisn gas
below it can be calculated as follows, Below dA @heré are Ny
molecules per unit volume with velocities.in the range of V to V + 4V,
and all possess a veloclity component in the direction of the positive

normal on ; dA. Assuming a Maxwellisn distribution,
3
=§2 2-2V2
Ny M’—(l%VeB av (A1)

1
where 1s the local gas densit equals and M is the mess
of & gas molecule., Sinee the molecules are traveling equally in all direc-
tions 1n the hemisphere, the number moving in the direction V¢ 1in the
dw
solid angle dw is NV e
volume of slant height V At and area dA will cross dA in time At.

Of these, the number of molecules in the

These can be written as Ny %ﬁ V cos ¥ dA ¢t. Thus, the molecules through

dA are distributed according to ILanberts cosine law and EEEEKJZE dA ecan’
be written as Fgy_g, dA, which is the seme shape factor used in thermal
radiation ealculations. Integrated over all velocities to give the mmss

flow leaving dA . in the solid angle dw gives mFgp.30 A where 'm 1is

m=p (’g—z)l/z (a2)

The m can be considered as the totdi mass flow rate crossing the surface .

per unit aresa,

i .
The energy of the molecular stream through JdA cen be calculated as
follows. The number of molecules crossing @&A per unit'time'per“unitiarea
is NVV/Z ag obtained by integrating the number crossing a solid angle

over the upper hemisphere. The energy of each molecule in the reservoir
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is 1/2 MVZ + MU where U is the average nontranslationsl internal
energy of the molecules in the reservolr enclosure., . Then the energy
crossing dA fper unit area per unit time can be integrated over all V

to glve

o0
3 3 _Bzvz v2 _ 1 1
f %,Z-Ve ?+U)QV—;[iﬁp¢§+U) (AS)
' 0
1) ph

Since¢ U = (?V - 3 R)T, (1), Equation. (A3) becomes

. (%)llz(cv + .123)1* - mE - (a4)
where E is the energy per unlt mess of the Maxweﬁiian stream crossing
dA.
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Fig. 1. - Analytical model.
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